AQA GCSE Maths

Revision Notes

Topic navigation panel

Topic navigation panel

(Pythagoras & Trigonometry)

Exact values: Sin, Cos, Tan

Exact Trigonometric Values

 

What are Exact Trigonometric Values?

For certain angles, the values of sinθ\sin \theta, cosθ\cos \theta, and tanθ\tan \theta can be expressed exactly using fractions and surds.

These angles include: 0°0 \degree, 30°30\degree, 45°45\degree, 60°60\degree, 90°90\degree, and their multiples.

Instead of using a calculator, you must memorise or derive these values using geometric reasoning.

 
Exact Trigonometric Values Table

θ\theta (Degrees)sinθ\sin \thetacosθ\cos \thetatanθ\tan \theta
0°0\degree010
30°30\degree12\frac{1}{2}32\frac{\sqrt{3}}{2}33\frac{\sqrt{3}}{3}
45°45\degree22\frac{\sqrt{2}}{2}22\frac{\sqrt{2}}{2}1
60°60\degree32\frac{\sqrt{3}}{2}12\frac{1}{2}3\sqrt{3}
90°90\degree10Undefined


 
How to Remember Exact Values?

1. Recognizing Patterns

  • The sin values from 0°0\degree to 90°90\degree mirror the cos values in reverse from 90°90\degree to 0°0\degree.
  • tan values can be derived by using tanθ=sinθ/cosθ\tan \theta = \sin \theta / \cos \theta.

2. Using Special Right-Angled Triangles

Two well-known triangles help derive these values:

1. The 45°45\degree-45°45\degree-90°90\degree Triangle

  • An isosceles right triangle with legs 1 unit and a hypotenuse 2\sqrt{2}.
  • Gives values for sin45°\sin 45\degree, cos45°\cos 45\degree, and tan45°\tan 45\degree.

 

diagram of forming exact trigonometry values for 45 degrees

 

2. The 30°30\degree-60°60\degree-90°90\degree Triangle

  • A right triangle where the shortest side is 1, the hypotenuse is 2, and the other side is 3\sqrt{3}.
  • Helps derive sin30°\sin 30\degree, cos30°\cos 30\degree, sin60°\sin 60\degree, and cos60°\cos 60\degree.

 

diagram of forming exact trigonometry values for 60 degrees and 30 degrees

 

Using Exact Trigonometric Values

In non-calculator exams, substitute exact values into equations instead of using decimal approximations.

 

Example 1: Solving an Equation

Find xx in the equation:

cos45°=x12\cos 45\degree = \frac{x}{12}

Substituting cos45°=22\cos 45\degree = \frac{\sqrt{2}}{2}

22=x12\frac{\sqrt{2}}{2} = \frac{x}{12}

Rearrange:

x=12×22x = 12 \times \frac{\sqrt{2}}{2}

x=62x = 6\sqrt{2}

Final Answer: x=62cmx = 6\sqrt{2} cm

 

Example 2: Finding a Coordinate on a Graph

A point (30,k)(30, k) lies on the graph of y=tanxy = \tan x. Find kk.

Since k=tan30°k = \tan 30\degree, substitute the exact value:
k=33k = \frac{\sqrt{3}}{3}

Final Answer: k=33k = \frac{\sqrt{3}}{3}

 

 

 

Tuity Tip

Hover me!

Memorise key values or sketch the special triangles at the start of an exam for reference.

Always leave answers in exact form (fractions and surds) unless stated otherwise.

Use trigonometric identities like tanθ=sinθcosθ\tan \theta = \frac{\sin \theta}{\cos \theta} to derive missing values.

Check whether a value is undefined (e.g., tan90°\tan 90\degree does not exist).

Choose Your Study Plan

MonthlyAnnualSave 20%

Plus

£4.99/month
  • Everything in Free plus...
  • Unlimited revision resources access
  • AI assistance (Within usage limits)
  • Enhanced progress tracking
  • New features soon...

Pro

£9.99/month
  • Everything in Plus plus...
  • Unlimited AI assistance
  • Unlimited questions marked
  • Detailed feedback and explanations
  • Comprehensive progress tracking
  • New features soon...
Most Popular