AQA GCSE Maths

Revision Notes

Topic navigation panel

Topic navigation panel

(Vectors)

Basic vectors and column vectors

Basic Vectors & Column Vectors

 

What is a Column Vector?

A column vector describes a movement from one point to another. It is written in the form:

(xy)\begin{pmatrix} x \\ y \end{pmatrix}

The top number (x)(x) is the movement horizontally (right or left)

The bottom number (y)(y) is the movement vertically (up or down)

 

column vector notation and what it means


Example:

(42)\begin{pmatrix} 4 \\ -2 \end{pmatrix}

Means move 4 right and 2 down.

 

Tuity Tip

Hover me!

Use arrows on a coordinate grid to help visualise column vector movement — it makes addition and subtraction more intuitive

 

Adding and Subtracting Vectors

To add vectors, add their top numbers and bottom numbers separately:

(35)+(21)=(3+25+(1))=(54)\begin{pmatrix}3 \\ 5\end{pmatrix} + \begin{pmatrix}2 \\ -1\end{pmatrix} = \begin{pmatrix}3+2 \\ 5+(-1)\end{pmatrix} = \begin{pmatrix}5 \\ 4\end{pmatrix}

To subtract vectors, subtract each component:

(62)(15)=(6125)=(53)\begin{pmatrix}6 \\ 2\end{pmatrix} - \begin{pmatrix}1 \\ 5\end{pmatrix} = \begin{pmatrix}6-1 \\ 2-5\end{pmatrix} = \begin{pmatrix}5 \\ -3\end{pmatrix}

 

Multiplying Vectors by Scalars

A scalar is just a number. Multiply both parts of the vector by the scalar:

3×(24)=(3×(2)3×4)=(612)3 \times \begin{pmatrix}-2 \\ 4\end{pmatrix} = \begin{pmatrix}3\times(-2) \\ 3\times4\end{pmatrix} = \begin{pmatrix}-6 \\ 12\end{pmatrix}

 

Combining Multiple Vectors

If an expression has more than one vector, do it step by step:

Example:

2(41)+3(12)2 \begin{pmatrix}4 \\ 1\end{pmatrix} + 3 \begin{pmatrix}-1 \\ 2\end{pmatrix}

Step 1: Multiply each vector:

(82)+(36)\begin{pmatrix}8 \\ 2\end{pmatrix} + \begin{pmatrix}-3 \\ 6\end{pmatrix}

Step 2: Add:

(8+(3)2+6)=(58)\begin{pmatrix}8+(-3) \\ 2+6\end{pmatrix} = \begin{pmatrix}5 \\ 8\end{pmatrix}

 

Tuity Tip

Hover me!

Scalar multiplication stretches or shrinks the vector — it changes the size but not the direction

Always simplify each part before combining — it prevents calculation slips

 

Worked Example

Let a=(p2)\mathbf{a} = \begin{pmatrix}p \\ 2\end{pmatrix} and b=(31)\mathbf{b} = \begin{pmatrix}-3 \\ 1\end{pmatrix}

Given:

2a+4b=(212)2\mathbf{a} + 4\mathbf{b} = \begin{pmatrix}2 \\ 12\end{pmatrix}

 

Step 1: Multiply:

2a=(2p4),4b=(124)2\mathbf{a} = \begin{pmatrix}2p \\ 4\end{pmatrix}, \quad 4\mathbf{b} = \begin{pmatrix}-12 \\ 4\end{pmatrix}

Step 2: Add vectors:

(2p124+4)=(2p128)\begin{pmatrix}2p - 12 \\ 4 + 4\end{pmatrix} = \begin{pmatrix}2p - 12 \\ 8\end{pmatrix}

Set equal to the given vector:

(2p128)=(212)\begin{pmatrix}2p - 12 \\ 8\end{pmatrix} = \begin{pmatrix}2 \\ 12\end{pmatrix}

Match components:

  • Top: 2p12=22p=14p=72p - 12 = 2 \Rightarrow 2p = 14 \Rightarrow p = 7
  • Bottom: 8=128 = 12 \to This is a contradiction, so something in the setup must be incorrect.

 

 

Tuity Tip

Hover me!

Always match top with top, bottom with bottom — and double-check the original problem if things don’t add up

Choose Your Study Plan

MonthlyAnnualSave 20%

Plus

£4.99/month
  • Everything in Free plus...
  • Unlimited revision resources access
  • AI assistance (Within usage limits)
  • Enhanced progress tracking
  • New features soon...

Pro

£9.99/month
  • Everything in Plus plus...
  • Unlimited AI assistance
  • Unlimited questions marked
  • Detailed feedback and explanations
  • Comprehensive progress tracking
  • New features soon...
Most Popular