AQA GCSE Maths

Revision Notes

Topic navigation panel

Topic navigation panel

(Vectors)

Vector Proof: Parallel Vectors & Collinear Points

Vectors Proof: Parallel Vectors & Collinear Points

 

What are vector proofs?

Vector proofs use vector expressions and properties to prove geometrical facts like:

  • Whether vectors are parallel
  • Whether points lie on a straight line (collinear)
  • How to divide a vector in a given ratio

 

Parallel Vectors

Two vectors are parallel if one is a multiple of the other:

b=kafor some scalar k\mathbf{b} = k\mathbf{a} \quad \text{for some scalar } k

  • If k>0k > 0, they're in the same direction
  • If k<0k < 0, they're in opposite directions

 

Example:

a=(13),b=(26)=2a\mathbf{a} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 2 \\ 6 \end{pmatrix} = 2\mathbf{a}

So a\mathbf{a} and b\mathbf{b} are parallel.

If the two vectors factorise and have a bracket that is common then they are also parallel. For example

  • 6b10a2(3b5a)6\mathbf{b} - 10\mathbf{a} \to 2(3\mathbf{b} - 5\mathbf{a})
  • 12b20a4(3b5a)12\mathbf{b} - 20\mathbf{a} \to 4(3\mathbf{b} - 5\mathbf{a})
  • So 12b20a=2(6b10a)12\mathbf{b} - 20\mathbf{a} = 2(6\mathbf{b} - 10\mathbf{a})

 

 

 

Tuity Tip

Hover me!

If you can factor a vector expression to show a common bracket, that’s a great sign the vectors are parallel

 

 

Collinear Points

To show three points lie on a straight line (are collinear):

Show two of the vectors (e.g., AB\vec{AB} and BC\vec{BC}) are parallel

Make sure the segments are connected (they share a point)

If: BC=2AB\vec{BC} = 2\vec{AB} Then AA, BB, and CC lie on the same line.

 

Parallel isn’t enough — you need shared points too

 

diagram of collinear and non-collinear points

 

Using Ratios with Vectors

If a line is divided in a ratio (e.g. AP:PC=3:1AP : PC = 3:1), the total parts = 3+1=43 + 1 = 4

  • AP=34AC\vec{AP} = \frac{3}{4}\vec{AC}
  • PC=14AC\vec{PC} = \frac{1}{4}\vec{AC}

This helps us express positions and midpoints accurately.

 

Example

Trapezium OABC

Given:

  • OA=2a\vec{OA} = 2\mathbf{a}
  • OC=c\vec{OC} = \mathbf{c}
  • AB=3OC=3c\vec{AB} = 3\vec{OC} = 3\mathbf{c}

and AB is parallel to OC,

 

diagram of trapezium for vector proof question

 

 

(a) Find OB\vec{OB} and AC\vec{AC}

OB=OA+AB=2a+3cAC=OA+OC=2a+c=c2a\vec{OB} = \vec{OA} + \vec{AB} = 2\mathbf{a} + 3\mathbf{c} \vec{AC} \\ = -\vec{OA} + \vec{OC} = -2\mathbf{a} + \mathbf{c} = \mathbf{c} - 2\mathbf{a}

 

(b) Point P lies on AC such that AP:PC=3:1AP : PC = 3 : 1

Total parts = 4

AP=34AC=34(c2a)=32a+34c\vec{AP} = \frac{3}{4}\vec{AC} = \frac{3}{4}(\mathbf{c} - 2\mathbf{a}) = -\frac{3}{2}\mathbf{a} + \frac{3}{4}\mathbf{c}

OP=OA+AP=2a+(32a+34c)=12a+34c\vec{OP} = \vec{OA} + \vec{AP} = 2\mathbf{a} + \left( -\frac{3}{2}\mathbf{a} + \frac{3}{4}\mathbf{c} \right) = \frac{1}{2}\mathbf{a} + \frac{3}{4}\mathbf{c}

 

(c) Show that P lies on OB and find the ratio OP:PBOP : PB

From earlier: OB=2a+3c\vec{OB} = 2\mathbf{a} + 3\mathbf{c}

Compare: OP=14(2a+3c)=14OB\vec{OP} = \frac{1}{4}(2\mathbf{a} + 3\mathbf{c}) = \frac{1}{4}\vec{OB}

So OP is 14\frac{1}{4} of OB. That means: OP:PB=1:3OP : PB = 1 : 3

Conclusion:

  • OP\vec{OP} and OB\vec{OB} are parallel
  • They share point O
  • So P is on the line OB
  • The ratio is 1:31:3

 

 

Tuity Tip

Hover me!

Use vector notation clearly — arrows and brackets matter!

Always show how one vector is a multiple of another for parallel proof

Think visually: sketch the situation if you’re stuck

Choose Your Study Plan

MonthlyAnnualSave 20%

Plus

£4.99/month
  • Everything in Free plus...
  • Unlimited revision resources access
  • AI assistance (Within usage limits)
  • Enhanced progress tracking
  • New features soon...

Pro

£9.99/month
  • Everything in Plus plus...
  • Unlimited AI assistance
  • Unlimited questions marked
  • Detailed feedback and explanations
  • Comprehensive progress tracking
  • New features soon...
Most Popular