Edexcel GCSE Maths

Revision Notes

Topic navigation panel

Topic navigation panel

(Simultaneous Equations)

Quadratic Simultaneous Equations

Deciphering Quadratic Simultaneous Equations

What is a Quadratic Simultaneous Equation?

A quadratic simultaneous equation involves two equations:

  1. A linear equation (no powers of xx or yy greater than 1).
  2. A quadratic equation (one variable, typically xx, has a power of 2).

For example: y=2x+1y=x23x+2y = 2x + 1 \\ y = x^2 - 3x + 2

To solve these, we find the values of xx and yy that satisfy both equations simultaneously.

 

How to Solve Quadratic Simultaneous Equations

1. Substitution Method

  1. Step 1: Rearrange the linear equation to express yy (or xx)
  2. Step 2: Substitute this expression into the quadratic equation.
  3. Step 3: Solve the resulting quadratic equation.
  4. Step 4: Use the xx-values to find the corresponding yy-values

 

Examples

Example 1

Solve the simultaneous equations: y=2x+1y=x23x+2y = 2x + 1 \\ y = x^2 - 3x + 2

Solution:

  1. Substitute y=2x+1y = 2x + 1 into the quadratic equation y=x23x+2y = x^2 - 3x + 2: 2x+1=x23x+22x + 1 = x^2 - 3x + 2

  2. Rearrange into standard quadratic form ax2+bx+c=0ax^2 + bx + c = 0: Subtract 2x+12x + 1 from both sides: 0=x23x2x+21Simplify: x25x+1=00 = x^2 - 3x - 2x + 2 - 1 \\ \text{Simplify: } \\ x^2 - 5x + 1 = 0
  3. Solve the quadratic equation using the quadratic formula: The quadratic formula is: x=b±b24ac2aFor x25x+1=0,a=1,b=5, and c=1.Substitute these values: x=(5)±(5)24(1)(1)2(1)Simplify:  x=5±2542x=5±212Approximate:  x=5+212orx=5212x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{For } x^2 - 5x + 1 = 0, a = 1, b = -5, \text{ and } c = 1. \text{Substitute these values:} \\  x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(1)}}{2(1)} \\ \text{Simplify: } \ x = \frac{5 \pm \sqrt{25 - 4}}{2} \\ x = \frac{5 \pm \sqrt{21}}{2} \\ \text{Approximate: } \ x = \frac{5 + \sqrt{21}}{2} \quad \text{or} \quad x = \frac{5 - \sqrt{21}}{2}
  4. Find yy for each xx: Substitute xx back into y=2x+1y = 2x + 1:
    • For x=5+212x = \frac{5 + \sqrt{21}}{2}: y=2(5+212)+1 y=5+21+1y=6+21y = 2\left(\frac{5 + \sqrt{21}}{2}\right) + 1 \\  y = 5 + \sqrt{21} + 1 \\ y = 6 + \sqrt{21}
    • For x=5212x = \frac{5 - \sqrt{21}}{2}: y=2(5212)+1 y=521+1y=621y = 2\left(\frac{5 - \sqrt{21}}{2}\right) + 1 \\  y = 5 - \sqrt{21} + 1 \\ y = 6 - \sqrt{21}

Final Solutions: x=5+212,y=6+21x=5212,y=621x = \frac{5 + \sqrt{21}}{2}, \, y = 6 + \sqrt{21} \\ x = \frac{5 - \sqrt{21}}{2}, \, y = 6 - \sqrt{21}

 

quadratic simultaneous equation solve using substitution

 

 

Worked Example

Solve y=x+2 y=x24x+3y = x + 2 \\  y = x^2 - 4x + 3

 

 

 

 

Example 2

Solve the simultaneous equations: y=3x4x2+y2=25y = 3x - 4 \\ x^2 + y^2 = 25

Solution:

  1. Substitute y=3x4y = 3x - 4 into x2+y2=25x^2 + y^2 = 25: x2+(3x4)2=25x^2 + (3x - 4)^2 = 25

  2. Expand (3x4)2(3x - 4)^2: x2+(3x4)2=25Simplify: 10x224x+16=25x^2 + (3x - 4)^2 = 25 \\ \text{Simplify: } \\ 10x^2 - 24x + 16 = 25

  3. Rearrange into standard quadratic form: 10x224x9=010x^2 - 24x - 9 = 0
  4. Solve using the quadratic formula: For 10x224x9=0,a=10,b=24,andc=910x^2 - 24x - 9 = 0, a = 10, b = -24, \text{and} c = -9. Use the quadratic formula: x=(24)±(24)24(10)(9)2(10)Simplify: x=24±576+36020 x=24±93620Approximate: x=24+30.620orx=2430.620 x=2.73orx=0.33x = \frac{-(-24) \pm \sqrt{(-24)^2 - 4(10)(-9)}}{2(10)} \\ \text{Simplify: } \\ x = \frac{24 \pm \sqrt{576 + 360}}{20} \\  x = \frac{24 \pm \sqrt{936}}{20} \\ \text{Approximate: } \\ x = \frac{24 + 30.6}{20} \quad \text{or} \quad x = \frac{24 - 30.6}{20} \\  x = 2.73 \quad \text{or} \quad x = -0.33
  5. Find yy for each xx: Substitute xx back into y=3x4y = 3x - 4
    • For x=2.73x = 2.73: y=3(2.73)4=8.194=4.19y = 3(2.73) - 4 = 8.19 - 4 = 4.19
    • For x=0.33x = -0.33: y=3(0.33)4=0.994=4.99y = 3(-0.33) - 4 = -0.99 - 4 = -4.99

Final Solutions: x=2.73,y=4.19x=0.33,y=4.99x = 2.73, \, y = 4.19 \\ x = -0.33, \, y = -4.99

 

 

 

Worked Example

Solve y=4x+1x2+y2=20y = 4x + 1 \\ x^2 + y^2 = 20

 

 

Tuity Tip

Hover me!

Always substitute the linear equation into the quadratic equation.

Rearrange into standard quadratic form ax2+bx+c=0ax^2 + bx + c = 0

Use the quadratic formula or factorisation to solve.

Check your solutions by substituting back into both equations

Choose Your Study Plan

MonthlyAnnualSave 20%

Plus

£4.99/month
  • Everything in Free plus...
  • Unlimited revision resources access
  • AI assistance (Within usage limits)
  • Enhanced progress tracking
  • New features soon...

Pro

£9.99/month
  • Everything in Plus plus...
  • Unlimited AI assistance
  • Unlimited questions marked
  • Detailed feedback and explanations
  • Comprehensive progress tracking
  • New features soon...
Most Popular