Edexcel GCSE Maths

Revision Notes

Topic navigation panel

Topic navigation panel

(Vectors)

Vector Magnitudes & Lengths

Vector Magnitudes & Lengths

 

What is the Magnitude of a Vector?

The magnitude (or modulus) of a vector is its length or size.

It is always a positive value.

Notation: The magnitude of vector a\mathbf{a} is written as a|\mathbf{a}|.

The magnitude of vector AB\vec{AB} is written as AB|\vec{AB}|.

 

 

Tuity Tip

Hover me!

The magnitude is like measuring the length of a line segment, no matter what direction it goes

 

 

Finding the Magnitude from Components

If a vector is written as a column vector: a=(xy)\mathbf{a} = \begin{pmatrix} x \\ y \end{pmatrix} Then the magnitude is found using Pythagoras' Theorem:

a=x2+y2|\mathbf{a}| = \sqrt{x^2 + y^2}

Example: a=(62)a=62+(2)2=36+4=406.32\mathbf{a} = \begin{pmatrix} 6 \\ -2 \end{pmatrix} \Rightarrow |\mathbf{a}| = \sqrt{6^2 + (-2)^2} \\ = \sqrt{36 + 4} = \sqrt{40} \approx 6.32

 

 

Tuity Tip

Hover me!

Always square both components before adding, remember the magnitude is always positive.

 

 

Example

Points: A(8,2),B(11,4)A(8, 2), B(11,-4)

(a) Find the column vector AB\vec{AB}

AB=(8112(4))=(36)\vec{AB} = \begin{pmatrix} 8 - 11 \\ 2 - (-4) \end{pmatrix} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}

(b) Find the magnitude AB|\vec{AB}|

AB=(3)2+62=9+36=456.71|\vec{AB}| = \sqrt{(-3)^2 + 6^2} = \sqrt{9 + 36} = \sqrt{45} \approx 6.71

(c) Explain why BA=AB|\vec{BA}| = |\vec{AB}|

Because magnitude only measures size, not direction

So even though BA\vec{BA} points the opposite way, it is the same length

 

 

Tuity Tip

Hover me!

Reversing a vector doesn’t change its length – just its direction

 

 

Scaling Magnitudes

 

(d) Vector CD\vec{CD} is 4 times the magnitude of AB\vec{AB}. Find a possible column vector for CD\vec{CD}

We know AB=(36)\vec{AB} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}, so:

CD=4×(36)=(1224)\vec{CD} = 4 \times \begin{pmatrix} -3 \\ 6 \end{pmatrix} = \begin{pmatrix} -12 \\ 24 \end{pmatrix} 

 

Choose Your Study Plan

MonthlyAnnualSave 20%

Plus

£4.99/month
  • Everything in Free plus...
  • Unlimited revision resources access
  • AI assistance (Within usage limits)
  • Enhanced progress tracking
  • New features soon...

Pro

£9.99/month
  • Everything in Plus plus...
  • Unlimited AI assistance
  • Unlimited questions marked
  • Detailed feedback and explanations
  • Comprehensive progress tracking
  • New features soon...
Most Popular