WAEC WAEC Nigeria General Mathematics

Revision Notes

Topic navigation panel

Topic navigation panel

(Vectors in a Plane)

Vector Addition and Subtraction

Vector Addition and Subtraction

Understanding Vectors in a Plane

Vectors are quantities that have both magnitude and direction. In a plane, vectors are often represented as arrows, where the length represents the magnitude and the arrowhead indicates the direction.

For example, a vector can be written as a=(a1a2)\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, where a1a_1 and a2a_2 are components along the x-axis and y-axis respectively.

Vector Addition

  • To add two vectors a\mathbf{a} and b\mathbf{b}, you add their corresponding components:

a+b=(a1a2)+(b1b2)=(a1+b1a2+b2)\mathbf{a} + \mathbf{b} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \end{pmatrix}

Vector Subtraction

  • To subtract vector b\mathbf{b} from vector a\mathbf{a}, subtract their corresponding components:

ab=(a1a2)(b1b2)=(a1b1a2b2)\mathbf{a} - \mathbf{b} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} - \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 - b_1 \\ a_2 - b_2 \end{pmatrix}

Worked Example

Worked Example

Add the vectors a=(34)\mathbf{a} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} and b=(12)\mathbf{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.

Example

Subtract the vector b=(23)\mathbf{b} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} from a=(57)\mathbf{a} = \begin{pmatrix} 5 \\ 7 \end{pmatrix}.

Solution:

  • ab=(57)(23)=(5273)=(34)\mathbf{a} - \mathbf{b} = \begin{pmatrix} 5 \\ 7 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 - 2 \\ 7 - 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}

Tuity Tip

Hover me!

Tip: When adding or subtracting vectors, always ensure you are working with the same dimensions. Double-check your component calculations to avoid mistakes!

Choose Your Study Plan

MonthlyAnnualSave 20%

Plus

£4.99/month
  • Everything in Free plus...
  • Unlimited revision resources access
  • AI assistance (Within usage limits)
  • Enhanced progress tracking
  • New features soon...

Pro

£9.99/month
  • Everything in Plus plus...
  • Unlimited AI assistance
  • Unlimited questions marked
  • Detailed feedback and explanations
  • Comprehensive progress tracking
  • New features soon...
Most Popular