Edexcel GCSE Maths

Revision Notes

Topic navigation panel

Topic navigation panel

(Functions)

Composite Functions

The Dynamics of Composite Functions

What Are Composite Functions?

A composite function is like using two function machines in a row. You take the output of one function and feed it into another function.

For example:

  • Function 1: f(x)=x+2f(x) = x + 2 (Add 2 to xx)
  • Function 2: g(x)=3xg(x) = 3x (Multiply xx by 33)
  • To find g(f(x))g(f(x)) or gf(x)gf(x): First apply f(x)f(x), then apply g(x)g(x) to the result

We write composite functions like this:

  • g(f(x))g(f(x)) or gf(x)gf(x): Read as "gg of f(x)f(x)".
  • f(g(x))f(g(x)) or fg(x)fg(x): Read as "ff of g(x)g(x)".

 

How to Solve Composite Functions

  1. Start with the inside function (e.g., f(x)f(x))
  2. Calculate its result using the given xx
  3. Use that result as the input for the outside function (e.g., g(x)g(x))

 

Examples

Example 1: Find gf(x)gf(x) for f(x)=x+2f(x) = x + 2 and g(x)=3xg(x) = 3x:

Write out gf(x)gf(x): gf(x)=g(x+2)gf(x) = g(x + 2)

Substitute x+2x + 2 into g(x)g(x): g(x+2)=3(x+2)g(x + 2) = 3(x + 2)

Expand: gf(x)=3x+6gf(x) = 3x + 6

 

 

 

Worked Example

Find ff(x)ff(x) for f(x)=2x+3f(x) = 2x + 3

 

 

 

 

 

Example 2: Evaluate fg(x)fg(x) for the same functions when x=4x = 4:

Write out fg(x)fg(x): fg(x)=f(3x)fg(x) = f(3x)

Substitute 3x3x into f(x)f(x): f(3x)=3x+2f(3x) = 3x + 2

Evaluate at x=4x = 4: fg(4)=3(4)+2=12+2=14fg(4) = 3(4) + 2 = 12 + 2 = 14

 

 

Worked Example

Evaluate fg(7)fg(7) for f(x)=3x+2f(x) = 3x + 2 and g(x)=x5g(x) = x -5

 

 

 

 

 

 

Example 3: Find h(g(f(x)))h(g(f(x))) for f(x)=x+1,g(x)=x2f(x) = x + 1, g(x) = x^2, and h(x)=2x3h(x) = 2x - 3:

Start with f(x)f(x) : f(x)=x+1f(x) = x + 1

Substitute f(x)f(x) into g(x)g(x): gf(x)=g(x+1)=(x+1)2gf(x) = g(x + 1) = (x + 1)^2

Substitute gf(x)gf(x) into h(x)h(x): h(g(f(x)))=h((x+1)2)=2(x+1)23h(g(f(x))) = h((x + 1)^2) = 2(x + 1)^2 - 3

Expand (x+1)2(x + 1)^2: h(g(f(x)))=2(x2+2x+1)3=2x2+4x+23h(g(f(x))) = 2(x^2 + 2x + 1) - 3 = 2x^2 + 4x + 2 - 3

Simplify: h(g(f(x)))=2x2+4x1h(g(f(x))) = 2x^2 + 4x - 1

 

 

 

Tuity Tip

Hover me!

Work Inside-Out: Always start with the innermost function and work outward.

Write Everything Clearly: Avoid mistakes by substituting carefully.

Visualize the Process: Think of functions as machines to track inputs and outputs.

Choose Your Study Plan

MonthlyAnnualSave 20%

Plus

£4.99/month
  • Everything in Free plus...
  • Unlimited revision resources access
  • AI assistance (Within usage limits)
  • Enhanced progress tracking
  • New features soon...

Pro

£9.99/month
  • Everything in Plus plus...
  • Unlimited AI assistance
  • Unlimited questions marked
  • Detailed feedback and explanations
  • Comprehensive progress tracking
  • New features soon...
Most Popular